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We' describe an interactive computer program to trace solutions of systems of nonlincar
algebraic equations and illustrate its application 10 solve several difficult problems. Turning
points and bifurcations are located and solution branches are identified and traced interac-
tively. Of special interest is its application to study solutions of large, sparse systems of non-
linear equations that result from the discretization of boundary value problems. Such systems
arise in the description of physical, biological, and chemical phenomena. As an example, we
show a model of urine formation in the mammalian kidney [13], where path-following in a
subspace makes tracing the solution surface possible.  © 1986 Academic Press, Inc.

1. INTRODUCTION

CONKUB permits the study of relatively large systems of nonlinear algebraic
equations, F(x, a) =0, with vector of functions F, unknowns x and parameters «.
Such systems often arise from the discretization of nonlinear differential equations
that describe physical, biological, and chemical phenomena. An example is the mul-
tipoint boundary value problem described by Mejia and Stephenson [13]. We wish
to-study such a system of convection~diffusion equations as a function of individual
membrane parameters because, in general, there exist multiple solutions to these
equations, and their number and time stability changes with variations in the
parameters [14].

CONKUB consists of

(1)  a driver that controls program flow, allowing (and prompting) the user to
set data, parameters and program function interactively;

(2) a path-following procedure to compute points along a solution curve of
an underdetermined system of equations;

(3} a procedure to identify and record turning and branch points.

The path-following procedure is based on methodology due to Keller [10] and

Kubﬁ’{:e?k [11]. Turning points and simple bifurcations are treated as by Crandall

and ‘Rabinowitz [ 5], and Bunow and Kernevez [2]; a scheme for the treatment of
67
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multiple branching is also given. Methodology for following solutions to nonlinear
systems has also been described, for example, by Chow, Mallet-Paret, and
Yorke [3], Peitgen and Priifer {20], Watson [28], Allgower and Georg [1], Moré
and Cosnard [17], Rheinboldt [22], Georg [7], Peitgen and Schmitt [21], Rhein-
boldt and Burkhardt [23], Morgan [19], and Kearfott [9]. Algorithms for con-
tinuation of solutions include those by Jiirgens, Peitgen, and Saupe {87, Moré and
Cosnard [ 18], Watson and Fenner [29], and Rheinboldt and Burkhardt [24]. A
computer program for the bifurcation analysis of autonomous systems of ordinary
differential equations has been developed by Doedel [6], and a recent version
permits a limited bifurcation analysis of algebraic systems.

To use CONKUB the user provides a subroutine to evaluate the functions F and
approximations to the Jacobian and Hessian matrix when needed. CONKUB then
facilitates solution in several ways:

(1) Calculation is interactive, so that the result of a command may be con-
sidered before the next command is issued.

(2) The choice of the parameter (or unknown) to be varied at any step is
usually made by CONKUB, but may be specified by the user.

(3) Solution may proceed in either a positive or negative direction in
the variable being followed. Hence at any step one may proceed in the current
direction, turn, or target to a solution with a given value of this variable. A list of
commands and their description is given in Appendix A,

{4) Control parameters and bounds set by the user may be viewed and
modified during a calculation.

The computer program, which consists of approximately 2000 FORTRAN
statements, will appear elsewhere and is available from the author upon request
{preferably via computer mail to Mejia @ MIT-MULTICS.ARPA).

In Section 2 we describe the path-following algorithm used and the treatment of
turning points and bifurcations. In Section 3 we describe a method for path-follow-
ing in a subspace that we use to treat large, sparse problems. In Section 4 we give
three examples that illustrate the method. The first example illustrates the use of
CONKUB to follow a curve loosely sometimes (to reduce computation) and very
closely other times (to obtain a solution accurately). Appendix C shows how this is
done. The second example illustrates the ability to identify and trace multiple
tangential arcs. The third example shows the ability to trace solutions for a
relatively large problem that has been partitioned as shown Section 3. Here the
method is used to obtain solutions for the kidney model described in Appendix B.

2. CoNTINUATION METHOD

Given a system of nonlinear algebraic equations

F(x,a)=0, F. R"xR‘— R" (2.1)

w
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¥, parameters « and F sufficiently smooth, we use the assumed con-
rentiability of F in x and a to derive the differential equations

dx
SN F 6 xa®) =1 (22)
l

with F, = 0F,/dx,, 0F/0u,=(3F,/0a,,.., OF, /du)%. 1 <i, j<m,
F(x% a®) =0, I<i<gq, and a, fixed for k31

Parametrize with respect to the arc length s of the solution locus and dif-
e F with respect to s to obtain the system of equations
dF;, & 0F,dx; OF,du,

9 § OFidx, OFidu;_ L i=12..m, 1<i<q 23
DN Pl b " ¢ 23

The arameter 5 is determined as arc length along the solution curve in R™*'! by

oo (dx\? | (da)\
5(&@) +(3) = 24

f=1

(2.3) may be considered as a system of m equations in the m+ 1
x_,, xz, vy Xpgs G and the system may be solved with respect to any one

(OF, . OF OF . _oF )
dx, OXy g OXp 4 X 1
Fe=| : @9)
oF,, oF,  OF,, oF,,
| 9x; Oxg_y OXpy Xy

ﬁia-r,--wherc we have written x,,, , = a, for consistency. We can then solve
#2:3) to obtain the equations

%‘mﬁ,%, P 1, 2 k= 1, kb Ly m o+ 1. (2.6)
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Substitution of (2.6) into (2.4) yields the result

;‘.if;’i _ m 1 2)—-1/2 27
=t (i + g B , (2.7)
i#k
with the sign of (2.7) chosen to preserve the orientation along the curve.
Equations (2.6) and (2.7) are integrated explicitly using a variable order
Adams-Bashforth multistep method, and the truncation error incurred is corrected
by applying Newton’s method to remain within a specified distance of the solution
CUrve.

At each value calculated along the solution curve a change of sign (or & change
of direction near zero) in the determinant of F, indicates the possible existence of a
singularity. We use bisection to obtain (x*, a*) such that det F {x*, a*}=0. Other
criteria are given by Allgower and Georg [17, Jiirgens et ol [8] and Moore and
Spence [16].

Turning points are thus readily identified. Our technique for identifying and trac-
ing arcs at branch points is based on that of Crandall and Rabinowitz [4, 5],
Keller [10] and the implcmentation of Bunow and Kernevez [2]. A treatment of
multiple bifurcations is given by Kearfott [9]. Our approach has been to treat all
-bifurcation points as if simple.

Let the dimension of the null space of F, at (x* a*), dnm N{F¥)=1, then
N({(F*)T) =span , and WTF, | <8 with § small indicates (x*, «*) is a bifurcation
point. Since we know the tangent of the original branch at a simple bifurcation, we
‘use the bifurcation condition, F* e R(F*), to obtain the tangent of the bifurcating
branch. A small step in each dxrectxon yields points that are corrected onto the
bifurcating branch [2] using Newton’s method. At multiple branch points we do an
interactive search.

3. PaTH-FOLLOWING IN A SUBSPACE

it has previously been shown [12, 13] that certain multipoint boundary value
problems can be discretized and partitioned for iterative solution (see Appendix B
for an example). Consider such a system of differential equations which has been
discretized using finite differences to form a set of nonlinear algebraic eguations

Fly;a)=0, F R ™xRi— R"*", (3.1)

with unknowns y and parameters «. Equations (3.1) may be partitioned and written
as

Fly,vaa)=0, Fii R"™x RY— R™
{= l, 2,;.., L, n/;>) 3,
FM('YI’ Vasees Yis ?M;d)gﬂ, FM: R”+meq"‘*Rm,
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2 nlm’z»nﬁs (3'2)
IED

with vectors y,€ R™, y,,€ R™ and a=(a', &?,.., a%) € R*.
To obtain solutions of Eqs. (3.1) as a function of a model parameter «”, we solve
‘the analog of Egs. (2.3) and (2.4); namely,

OFy ., . OF
Gt ¢ty
17l + (@) =1, (3.3)

Flypyar@)=0, I=12.,L,

with -initial conditions y{0) =19, a{0)=0a® and for F{y% a®)=0. Recall that s has
been-defined as arc length so that y,, = v,{s), a* = a®(s) and &* = dx"/ds.

Now if (y(s), a{s)) is a solution of (3.3), then for each s (y(s), a{s)) solves {3.1).
Conversely, if (y(s), a(s)): s, < s < s, is a branch of solutions of (3.1) (ie., (y(s), u(s))
is not-an isolated solution), then (y(s), a(s)) solves (3.3) with suitable initial con-

Suppose that (y:d) is a turning or branching point of (3.3), so that
det{(0F 4,/0y 4, }(7; 8)} = 0. We exchange the role of a dependent variable y/, with
the parameter a”, so that for some j, 1 <j<m,

oF

- ) s Al o A Y

'5;“' (?;Aq» yfuams ?;{4 ]9 a, ‘Y‘{f 19'”9 }’T{s o
M

jsifivertible. In this manner we proceed along a path on the solution surface of (3.3)

and:hence of (3.1). Variation of &, 1 €£A<¢g, permits study of the solutions as a
function of each of the parameters .

4, EXAMPLES

'thé’;ﬁrst example is due to Watson [28]. Consider the homotopy map
| v, @) =af + (1 —a)(v— %) (4.1)

. startingat (v°, 0) and follow the zero curve until @ = 1. Let f: R* — R be defined by

3
Je= v, —exp {cos (k Y v,-)iE, k=1,2,3 (4.2)
i

and v°=0.
Figures:1, 2, and 3 show each component of v plotted against the parameter.
Note the:four turning points for 0 < a < 1, and that large steps are taken for most of
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FiG. 1. The first component v, of the solution of Eq. (4.1) is plotted as a function of the parameter.

“the trajectory. Only near ¢ = 1 are small steps required. A portion of the log of the

-session to obtain these figures is given in Appendix C. It includes the initial guess
“aiid bounds specified, the solutions calculated and interactive viewing and changes
-of parameters.
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. -Fig. 2. The second component of v is plotted versus the parameter. Mote the abrupt turn at "y{
ﬂé0.67. ,}:" B
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Fic. 3. The third component of the solution is plotted against the parameter.

In the second example due to Kearfott [9] we consider the map
r(x, @)= ag(x)+ (1 —a) g%(x). (4.3)

g R*~R® is defined by g{x)=Ax—f(x), and g% R’ R’ is defined by
2x)= —Ax for fi=x},i=1,2,3, and

2 -1 0
A=16 { -1 2 ~173. (44)
0 -1 2

Figures 4 and 5 show the four solution arcs that intersect at a =0.5. We start at
solution {0, 0, 0, 0) and proceed to identify and trace the tangent solutions by trac-
ing -each branch detected. A rigorous, more time consuming procedure might be
invoked instead (see for example {6, 9, or 20]).

The third example, due to Mejia and Stephenson [15], is a model of solute and
water:fiow in the mammalian kidney that is described in Appendix B, The dis-
cretized model consists of several hundred equations whose solutions we seek as a
function of membrane parameters. Continuation of the solution is carried out in a
subspace with dimension m = 53 using the procedure described in Section J.

Figure:6 is a schematic diagram of the model. Figure 7 shows the total urine con-
centration (the outflow of tube CD in Fig. 6) as a function of the maximum rate of
salt -transport out of the thick ascending limb of Henle (tube AHL in the outer
medulla) of the long nephrons. Note that the hysterisis loop traced by the concen-
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. Fi16. 5. The parameter is graphed against the second component x, of the solution.
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Fic. 6. A schematic diagram of & model of the mammalian kidney described in Appendix B is
shown. Open arfows indicate water movement; solid arrows signify salt movement, and slashed arrows
signify urea movement,
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0.0 0.2 0.4 6.8 0.8 1.9

a1, 8,2

: The total concentration of the urine is shown as a function of the maximum rate of salt
- frans i the: thick ascending limb of Henle in the long nephrons, The dashed part of the curvedis
- the time unstable middle branch.




6. ®. MEJIA
APPENDIX A

A description of each of the commands available in CONKUB, as well as a
description of parameters that may be set by the user and their default values, is
given in Figs. Al and A2.

AprpenpDix B

Consider 2 model of the mammalian kidney [25,26] consisting of many
nephrons. Each nephron is modeled as a separate nephrovascular unit [14] with
water and solute exchange between nephron and vascular tubules through a com-
mon interstitial space. See the diagram shown in Fig. 6. The differential equations
that describe water and solute movement in each tubular segment [13] are as
follow: '

d o0C, d :
53 (C,,,F,v - Dy -fé—g"-ﬁ> + Jg + % (A, Cy)=A;54 (solute conservation), (B.1)
A,

== 0 {volume conservation}, (B.2)

haw~gra + J,'., +
. %%’ + R,F,=0 {equation of motion), (B.3)

- for 0<i< T tubes, 1 <k < K, solutes, where ¢ is the axial distance along the tube;
BgELL<1; | is the length of the ith tube; 0< C, is the concentration of the kth
-solute in the ith tube; F, is the axial volume flow; D, is the diffusion coefficient of
. the kth solute in the ith tube; J, is the transmembrane solute flux; ¢ is time; A, is
the: cross-sectional area of the tube; s, is the average net rate at which the kth
solute is being produced or destroyed by physical or chemical reaction; J,, is the
‘transmembrane volume flux (which is assumed to be approximately equal to the
water flux); P, is the hydrostatic pressure; and R, is the resistance to flow.

Transmural volume and solute flux is defined as follows:

szhlv EXRT(qumCik)aik"'Pi“Pq}’ (B4)
k

and

i =B Cppe — quH" (0 =0y} Ji{Cu + qu)/Z

@ g

T b.Cs ®3)
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CONKUB ALGORITHM FOR PATH FOLLOWING VERSICM 842683
040063600 00250 1 0000 D 08 06606 0 00 D6 0 56 00 06D O 06 0000 O T OO M SE KD SER MBI B DI BB BE DG DS 6

YOU ARE IR INITIA&IZATIGN RODE.

VALLD COMMAM
S8 PB HE i)
v PY RE SK
RB L] HE
RV cp 57
oy

TYPE XX? FOR INFQ OGN COMMAND XX.

YOU ARE IN COMMAND COMTRDL HODE. VA&ID COMMANDS ARE:
L9~--LEAVE THE VYARIABLE AS I
AI’“‘&SSIGN EACH VARIABLECKD INDIVID
88--~INFORMATION ON VAREABLES AMD BEFAUL? VALUES
§7 ~=-RETURK ?0 lN!?!Al!Z&?XON MODE OR RUMN MODE.
ONCE IW THE AL MODEs
S--'LE&VE YHE VAREABLE THE SAME
$7---C0 OH 70 THE WEXY VARIABLE.
ENTER THE UALUE ITSELF IF ALL VARIABLES(K) ARE VO HAVE
THE SAME WALUE,

YOU ARE IN RUN RODE.
VALID COMMANDS ARE:
38 P8 ME

090
RS Py RE T4
SF PN HE LE
K P L1 »

27 CH oy
TYPE XX? FOR INFD OK COMMAND XX.

SET VECTOR-=-8V
YOU WILL BE ASKED 7O ENPUY IMITEAL VALUES FOR THE VYARIABLE
YVECTOR X(I) AND TME PARAMEVER VECTOR PAR(I).

READ YECTOR~~-RY.
READ IN THE STARY VEC?O&S FQGH A FILE. YOU WILL BE ASKED FOR VHE
FILE MARE, THE FIRS ALUES MUST BE NYBL, THEK HPAR, ONE PER
LINE, FORMAY Xé. VQCYGR VA&UES HILL BE READ 5 PER LEINE, FORMAY
Di2.4,2X, COKTROL COMMANDS ARE MOT VALID--INCLUDE ALL VALUES.

SET BOUNDS---$B
YOU WILL BE ASKED 70 INPUT YALUES(FORMAY D18.4,16 OR L3} FOR:
MM&XS“°°EN?5§R&IQNn§VEP ALONQ THE ARC LENGTH OF THE SOLUTION
HﬁAX(!S--*APPﬂ@X ATE “PPER BGUNBS FOR INCRENEN? OF X(I) IN OWE
HYEGRATION STEP. --DEFAULY
EPS--=ACCURACY BES!RE IR NEWTON X RA?!GHS CONVERGENCE CRITER!GN
I8t SUM OF THE &DSOLUTE YALUE OF THE CHAN@E IH EACH
CONPORENY Oﬁ X %8 <= Epy, ---DEFAULY Q08¢
NCDRR-~*7HE NUMBER OF MWEMTON CORRECTIONS TO GEF BACK MEAR THE
CURYE, IF THE CR!TE&!ON 1% HOT MET, THE STEP SIZE WILL BE
??&Vgﬁ &Nbbgék& L TRy Y AGAIM. THIS WILL BE REPEATED NCORR
NDER(I)---DIRECTION OF CHANGE IN X(CI)
§or=PRSIVIVE ~i-~-~-NEGATIVE. ~--DEFABLY ¢
KUPP(E)---UPPER BOUNDS ON XC(E). ---DEFAUMLY 48. @
XLOWCE Y ---LOMER BOUNDS OM X(E), ~~-DEFAULY -4§
FACT---BIFURCATEOMN CRKTER!GN, CREITERION IS YMAT THE INNER PRODUCT
OF PSI GND THE PAR?IAL DE&!VATXVE OF THE FUNCTION, F, MIT
RESPE 0 PARSHETER I3 FACT; WNERE I'HE SPAN OF PREX¢
is TWE NULL SPACE OF THE RERIVA?!VE OF ¥ HITH RESPECY 70 X.
ALSD, SIZE OF STEP TAXKEN ON EITHER SIDE OF A BIFURCATION IN
SEA%&H oF BIgUQCA?IN@ BRANCH.
BSM~--SET TRUE FOR- BIFURCATEQH TESY ON CHANGE OF DIRECTION:
SET FALSE FOR BIFURCATION TEST ON CHANGE OF SIGN OMLY.

FAL FALSE
LPRNT---3ET TRUE 1@ PRXNT RESULT OF EACH MEWYDN XTERATION.

=i i

ALS
THE §TH FQRAHETER QUUND HILL BE READ IN AS THE BOUMD FOR X(HVBL+4I)

READ BOUNDS~-~-RB

RE&D BN THE SGUNDS FROM A FILE. YOU WILL BE ASKED FOR THE FILE

AME. THE FIRST TWO VALUES MUST BE HUBL AND NPAR. one PER LINE,
FORHAI 6. ALL INTEGER YALUES WILL BE IN FORMAT 16 REAL VALUES MILL
BE IN PORMAY D12,.4; LOGICAL VYALUES IN (5. EMTER REAL VEGTOR VALUES
§ PER LINE, INTEGER YECTOR VALUES 1% PER LINE, ZX !N TWEEN YALUES.
ENTER SCALAR VALUES OMNE PER LINE. COMTROL COMMAND RE HOT YALID~~-
FHCLUDE ALL VALUES. VALUES WILL BE READ N THE SAHE ORDER &S 98B.

HELP-~~HE
3YQP==~§¥

IF IN INITIALIZATION MODE, COMPLETES THE RUM AND RETURMS TO YHE
MORITOR. IF IH RUM MWODE. RETURMS YO INRZTIALIZAYION MODE.

Ficurg Al.
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PRINY BOUKDS---PB
PRINT QUT THUE CURREMT YALUES OF THE BOUNDS.

PRINY VECTOR---PY
PRINT OUY THE VECTOR OF VARIABLES AND PARAMEVERS.

PRINT HORM---PN
PRINT GUT THE MORK OF YTHE VARIABLE VECTOR AND PRINT OUT THE
PARAMETERS THAT ARE BEING FOLLOGMED

80
INﬁINIY!ALIZA?IUN MODE DOES INKTIAL WEWYGH ITERATIONS VO GET MEAR

IN YHE RUN MODE~--G0 HP--~ CALCULATE THE MEXY NP POINT(S
INITEAL DEFAULY FOR WP ES 1. THEW DEFAULY 35 "PREVIOUS WP,

REITART~~-RE
READ IN A PREVIOUSLY STORED POINT CREAVED BY THE MEWORY COMMAKD.
YOU WILL BE ASKED FOR THE FILE WAME,
IF YOU MISK YO GET OUY OF YNIS COMMAND, INPUT SY.

HERORY ~~-HE
STORES THE CURRENV POINT AMD STATUS IN A FILE WITH THE NAME OF YOUR
CHOICE., IF YOU HISH TO GET OUY OF THIS COMMAND, INPUT ST,

A HMEMORY FILE HILL AUTOH&?ICALLY RE PRODUCED FOR POINTS ON
SEFURCATE@ BRANCHES .

CHANGE PRINV-~-CP
;guauxtl BE GIVEN THE OPTION TO PRINT OUYT THE HORM, THE WECTOR,

SEY FOLLOMING PARAHE?E&&“““&F Lidd
SPECIFY WHICH PARAMECTER(S) 7O FOLLOM, WHERE HPF ( <23 }I3 THE HUMBER
OF PARAMETERS. INDICES OF YNE FOLLOMING PARAMETERS MiLL BE
STORED IN IFOLOGCId. IF IFOLO IS MOT IMITIALIZED ALL PARAMETERS
HAY BE FOLLOWED, !F NPFnNFA& IFDLO MILL BE SET AUTOMATICALLY.
===DEFAULT VALUE F =
LS (LEAYE SAWED AND S?(SYQP) "ARE VALID, WOMEVER THEY WILL BE
IONORED IF AN ERROR GCCURS.

GONHENTD“’CM
INSERT A COMMENY IW T“E SESSION LOG, WMHERE NL I3 THE NUMBER OF LINES.
EAGH l!NE MAY BE 75 CHARACTERS LOWG.-~-DEFAULY FOR ML = 1.

DATA--=DT
IHPYT REAL VALUES FOR RDATAL 1)-RDATA(S), AND IKVEGER VALUES FOR
RB&!A!i)‘IDAV&(S). FOR GPYIGHAL USE IN THE FURCTION SUBROUTINE.
70 USE THESE ARRAYS, THE FUMCTION SUBROUTIME MUST HAVE THE STATEMENT:
cuﬁﬂﬂNI!D&TAIQDA?A(§P IDATACSS

TURN~~=TY N

Fﬂllﬂu THE PA?H !“ fHE OPPOIETE DIRECT!QN

NP IS THME MUMBER OF POINTS. ---IMETIAL DEFAULY = 1. THEW DEFAULY
BECOMES THE PREV!@US YALUE FOR WP,

LEVEL STEPS-<-LE W
FOLLOM X{K) IN LEVEL S?E?S ALOKG THE CURVE
NP IS TNE MUMBER OF POINTS, --~INITIAL DEFAULT = 17 SUBSEQUENTLY THE
DEFALLY 38 T"E‘PR&V!@U&LY USED VALUE;
IN!?!A& DEFAU&? ! RERE unax;
NITEAL DEFAULY ON I
IF K CHANGES OR ANY EQRGR GCCURS, LEVEL MODE WItL STRP.

TARGEY POINF--—TP
FIND THE SCLUTION FOR & PART!CULAR YALUE OF X(K». YOU MIL
BE ASKED FOR THE VALUE, YRGPT F K CHANGES DR ANY ERROR OGCUQS.
TARGEY POINT MODE MELL STOP

@U??UF CURREHT VECTOR---0V
STORES THE CUBRENT POIHT 1IN A DINMARY FILE WITH A MAKE OF YOUR CHOICE.
EACH REC@QD HA ¥ B8 READ A3 F OllﬁﬁS
READ(FILENAMES (XCED, =9, HXTOTD
HHERE NX?B?*”VBLGNPAR. THIS I8 USEFUL FOR SAVING DATA FOR PLOYYING.

o

$ET
RESTRICTS F@&lBH!N@ IB VARZABLE %, FOR 8 < K <= MXVOY.

YQU MILL BE ASKED FOR K,
£ =8, L K”ﬂ ?ﬂ SELECY K (BEFABLT).
TURMING POINT DR BIFURCATION CALEULATEGNS WILL FREE THE SELECTION OF K.

FIGURE A2.
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<k s;x, where 4, is the hydraulic permeability coefficient of the ith
h-solute; &, is the solute permeability of the ith tube for the kth
s constant; T is the absolute temperature; subscript ¢ indicates an

eﬁnes the metabolncally dnven transport, which is assumcd to obey
,sa-Memen kinetics; a, is the maximum rate of transport, and b, is the
is- constam Tubes i, 1 < xél refer to thc nephrons and vasculawm of the

TABLE Bl
Normalized Parameters®

Tube®  h,  R(x10%

a o, kg Ay,
1400 2 0 1 i { R,=105x10"4
PEC 300 28.5 0 1 4 4 Re=0.1x10-*
DVR1 100 2000 0 1 1000 1000 Ry=250x 104
DVR2 100 28.5 0 t 1000 1000 Do, = 10%10-?
CAVR 100 49 0 { 100 100 Do, =1.0x10-?
AVRI 100 2000 0 1 1000 1000
KVR2 - 100 24.5 0 1 1000 1000
0 0 i — 0 )
- 7 — — — —_ B=05
50 10 i — 0 0
0 10 1 — 0.05 a=13 bh=0i
0 10 1 — 005,085 a=06,0° b=01
0.2 6 i — 0 0 a=045 b=10
02 3 i —_ 0 0 a=03 b5=10
© (44 6 i — 0 0, 0.02¢
: v_o;as 0 t - 0 ] E=0.

lw pemmbnmy, R, resistance to flow; o, Staverman reflection coefficient for filtered
eition: coefficient for large solute not filtered; A,, salt permeability; 4,, urea permeability;
ance -afferent to glomerulus; Ry, flow resistance efferent to glomerulus; R,, resistance to
ergtitium; D,,, diffusion constant for salt in the interstitium; B, fraction of filtzate reabsor-
ximal tubule; g, maximum rate of transport; b, Michaelis constam; E, fraction of collecting
niering:renal pelvis,

ilus: PGC, post glomerular capillary; DVRI, descending vas rectom for first {cortical)
mit; - CAVR, cortical ascending nephrovascular unit; AVR2, ascending vas recturn for
dullary) nephrovascular umit; BC, Bowman's capsule; PT, proximal tubule; DHL,
-of Henle's limb, AHL, ascending loop of Henle’s limb; DN, distai nephron; CD,
2P, renal pelvis.

alue refers to the outer medulla where 0 < x £0.5; the second refers to the inner medulla,
1..For 0.5 < x < 0.6 the value varies linearly.

“value holds for 0 x<04; the second holds for 06<x < 1. For 04<x <06 the value

BUeHIS
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TABLE BH
Normalized Boundary Values

[NECl ] ern

10
{Ures ) anerint 005
[Large proteins Janeria 0.0038
| 1.3%x 102
P\mmus B-OXIO"S
thddcr 1«4’4 X 10—3

: ;_j'.z;Hii-ef:th%e'zame‘duﬂary region, water and mass conservation require that

Jod&)= = L Jul8)

Tl &)=~ Jul{)

0<EL], 1 k<K In the cortex

1,=3 [ @ dt = ~Fol0)

oC,

Jp= =V = T

FM(O)s

o is: the velume of the cortical interstitium and 0<k <K

in 'ame Bi, and Table BII contains the boundary data for this model th
ratio.of three short nephrons for every long one.

AprpeEnDix C

ires C1-~C3 illustrate a portion of the session dialog for the solution of t i
ple problem given in Section 4. For brevity, we show the calculation of the
ree sample points of Figs. 1-3 beginning at a =0 and the computation at.the "




M-FON -PATH POLLONYNG

-.&-.-ﬂ%iﬁ@ﬁ@@b#@@ 9.60080000+60 $.00089205+09

PAR =
3. 9600006P¢80

.. i A N
. ~§z¢5¢onnaun»ai 2.5800800B-8 1 2.50800060-6
HEUAX 3
. 25608000501 2.5088088D~04 2.50800008-01
EPS s 1.00880009-06
NBIR: =
1 1 k] ]
R s
A 4000080D40 1.80080060+0 1 1. 0008800DEY
2600B8D480  ~1.0800008D+00  -1.0890300D+80
ffjﬁiaf 2 1.yoceosen-o3
'égﬁaru F
HiNlse the ME commend to seva the initial date,
START
cH

HRapin the computation.
ARE 3 NAR!&!&ES
ARE

S PARAMETER(S)
BISBH00D-01 2.5800000D-81 2.56900000-81
0DEOB-8 14 2.56600000-61 2.50800060~0%
- 1,0900800D-04
acmm ) 5
] ] 1
Susou6eea 1.0000000D461 1.0000R00D40 1
inoaanean -1, 86890800+00 -1,0800000D+00
“1-6506000D-03
%
BG80ILOD+ GO ¢.880800€0+00 0.0000200D+60
8 8 8 9
-
HE50600De00 §.8008300D+00 ©.0000806D+08

BOEROBH00

Fioure C1.

CONVERSATIONAL PATH-FOLLOWER

i '“‘nnﬁassuuaﬁuuﬂunswnaﬁnunwuuuuaasgununmnnuuunuum
8 HRHERERN mnmmnummsumnmnnmﬁmmmmﬁnmuuﬂ

OB
ng?ﬁubw-§ha S5 comwand to ini¢ialize the boynds snd control parsmeters.

1.06805000-0¢

3.6808000D-01

1. 9600080D+00

-4.08006000-81

1.0005000%-09

5.00080000-91

1, 19000005400

=9.00000000-B1

2.2035080D¢80

81

mnd to enter initial values for éhe veriables and parsmaters.

08.50008200¢80




R. MEJTA

b ol T N LA otdenes T kne-xoratl o 5.000De0s
CONRUD: NEWTONS CONV

gguum@ date in a form suilsbla for plotting uveing the OV commend.

-

gl‘!imtﬂmo the eslculsticon.

'mzcgﬁma Hom x%: %Rengpég;‘ PAR!“R: 7?.5'??2;25-%@“” = §.6100-97

HEWTOM 1V
CONKUB: HENTONS COMVERGEB) Ko
DETs §.08%8M28x 4§ Ks 9
Py

B
1.44138870~-01 1. 185317 10~04 9. 06838250-02

PAR =
$.599424198-02
g%

[+
é;ﬂ@hmga the fore of the output typed st the tersinsl using the CP command.
(=]
ggmucosnumn the csleulation.
X s
4. 3382268001

2.20205340-01 1.6964143D-94

PAR =
2.1959100D-01

COMKUD ¢ HEMTON ITER
CONKUB: MEWTONS CORVERGED;

DETs 8. 1244%2¥K & K=z f

4 Egg ﬂ‘ 3.3620~08, I Xnesa-Xoldi| = §.623D-08

. {For hrw!tg 1) @nlt moat of the computstion and
. shaw the lest tuo polints computed on the curve.)
o] 1

X -]
3.747076 1891 2.5266948D+89 %.3248498D-91

PAR =
9.9995997p-01¢

CONXUB s NEWMTOK ITER % BRR = 7.829B-16, JiXnew~Xoldl) = 3.081B-16 ;
CONKUB: NENTOMS CONVERGED: K= 3 H

DET= B.1323u28K 4 Ke 3
o

M
;;ns.m at &he current boundn wsing the PP command.
THERE ARE 3 VARIABLES

TNM.AR § PARAMETER(S?
1.0080800D~83 1.0060800D-83 1.8080060D~03 1.0086000D-65
HMAX = ’
1.0068800D-84 1.26800600-04 1.80000080-04 1.00000092-04
EPS = 1.08083005-98
,HE!RR: #
= 3 =9 1 ¥
=
1.8090006D+0 3 8.0000080D¢0 1.0080000De8 ¢ 1. 1806800D+90
HLgiE =
=$.88008000B+20 -9.80880000:60 -1.0080080D¢08 =§.08000060-01

Ficurg C2.
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9 .6000800D+08 9.00608005900 $.80020800+00 2.54000800D602

IBATA
L} ® 8 L 8

‘.jggﬁﬁuu the 5B eoitesnd &0 reduce the step size sllowsd.

W, R
8 G400808D-08 ¥ 5.0808008D-0¢ 5.00800000-04% 5.08000080-06

" 5.50008000-05  5.0080080D-95  5.8008009D-05  5.00080000-03

X .8
- §.74726268-01 2.3266768D200 % . 32544 37D~01

PaR _
B S0gTI2D-81

CCONRUB +  MEMTON ITER 2 ERR = 6.387D-16, } I Xnass-Xoldl] 5 4.7638-1¢
UBT  HEXTONS CONVERSER: K= 3

E¥s @, 13238208 6§ K= 3

Ficure C3.

‘ points approaching « = 1. See Appendix A for a detailed description of the
commands and other mnemonics used.
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